Supplementary material for Wang et al.

Supplementary Table 1. Summary of properties of CARNs.

1. CARNs are a re	are celi	l nonulation							
1. C/IM/15 W/C W/1		# Epithel	ial cells		# Mice		# CARNs (Nkx3.1 ⁺)		
Regressed prostate		38,329			4		266 (0.7%)		
2. CARNs are lun	ninal c	ells							
a. Luminal phen	otype o	of CARNs							
Marker	Cell ty	pe	pe # CARNs examined		ined	# Mice	# CARNs expressing		
p63	basal	•	379		9	0 (0%)			
Cytokeratin 18	lumina	ıl	837		4	828 (99%)			
Synaptophysin	neuroe	ndocrine	6	10		5	0 (0%)		
b. Luminal phe	notype (of lineage-ma	urked CARNs	5					
Marker	Cell ty	pe	# CARNs e	CARNs examined #		# Mice	# CARNs expressing		
p63	basal	•	9	98		3	0 (0%)		
Cytokeratin 14	basal		131		4	0 (0%)			
Cytokeratin 5	basal		93		4	2 (2%)			
Cytokeratin 18	lumina	1	123		4	123 (100%)			
3. CARNs are bip	otentia	ıl							
Progeny of li	neage-	# YFP ⁺ cells				# Basal YFP ⁺ cells (basal			
marked CARNs	in	(lineage-marked proge		ny)	# Mic		lineage-marked progeny)		
regenerated prostate	2		559		4		17 (3.0%)		
4. CARNs can sel	f-renev	v							
Self-renewing lineage-		# Nkx3.1 ⁺ YFP ⁺ cells			# N	# Nkx3.1 ⁺ YFP ⁺ BrdU ⁺ cells (self-			
marked CARNs in regressed prostate		(lineage-marked CARNs)		# Mice	e	renewing CARNs)			
		68		4		16 (24%)			
5. CARNs can rec	constitu	ite prostate d	ducts after s	ingl	e-cell tro	ansplan	tation		
Grafted cells		Grafts	performed			G	rafts recovered		
Single YFP-p (lineage-marked CA		43 16 <i>(37%)</i> (<i>p</i> <0.001)			(37%) (p<0.001)				
Single YFP-negativ	e		31 1 (3%)			1 (3%)			

Supplementary Table 2. Analysis of self-renewal in CARNs.

Marker phenotype of cells in second round regressed state (Fig. 3a,b)			Number of cells in category				
			Anima	Total			
Category of cells	Interpretation	#1	#2	#3	#4	(percent)	
Nkx3.1 ⁺	CARNs	100	64	337	417	918 (2.5%)	
YFP ⁺	Lineage-marked cells	169	108	330	378	985 (2.6%)	
BrdU ⁺	Proliferating cells	318	196	816	920	2250 (6.0%)	
Nkx3.1 ⁺ YFP ⁺	Lineage-marked CARNs (second round)	13	12	19	24	68 (0.18%)	
Nkx3.1 ⁺ BrdU ⁺	CARNs that have proliferated	14	24	58	70	166 (0.44%)	
YFP ⁺ BrdU ⁺	Lineage-marked cells that have proliferated	27	20	35	45	127 (0.34%)	
Nkx3.1 ⁺ YFP ⁺ BrdU ⁺	CARNs that have undergone a self-renewal division	3	2	5	6	16 (0.04%)	
Total epithelial cells		6259	3705	13484	14067	37515	
Ratios of cell categories	Interpretation	Percentages					
Nkx3.1 ⁺ BrdU ⁺ /Nkx3.1 ⁺	Percentage of CARNs that have proliferated	14%	38%	17%	17%	18%	
Nkx3.1 ⁺ YFP ⁺ BrdU ⁺ /Nkx3.1 ⁺ YFP ⁺	Percentage of lineage- marked CARNs that have undergone a self- renewal division	23%	17%	26%	25%	24%	

Cells were counted in sections of anterior prostate from 4 different mice treated as shown in Fig. 3a,b. Regions enriched for CARNs (Nkx3.1⁺ cells) were analyzed; thus the percentage of CARNs (2.5%) is higher than that determined by counting sections through the entire prostate.

Supplementary Table 3. Quantitation of BrdU label-retaining cells.

Mouse ID	# BrdU ⁺ cells	# epithelial cells	% BrdU ⁺ cells/total epithelial cells			
0050	2,533	17,060	14.8%			
0051	1,822	15,851	11.5%			
0052	2,042	16,259	12.6%			
0053	720	16,123	4.5%			
Totals	7,117	65,293	10.9%			
2. Percentage	of LRCs after five rounds	of serial regression				
Mouse ID	# BrdU ⁺ cells	# epithelial cells	% BrdU ⁺ cells/total epithelial cells			
0501	92	6,588	1.4%			
0502	151	15,388	1.0%			
2006	224	11,110	2.0%			
Totals	467	33,086	1.4%			
3. Overlap of 1	LRCs with CARNs					
Mouse ID	# BrdU ⁺ Nkx3.1 ⁺ cells	# Nkx3.1 ⁺ cells	% BrdU ⁺ Nkx3.1 ⁺ / Nkx3.1 ⁺ cells			
0501	6	42	14.3%			
0502	6	60	10.0%			
2006	15	91	16.5%			
Totals	27	193	14.0%			
4. Percentage	of LRCs after five rounds	of serial regenerati	on			
a. Wild-type						
Mouse ID	# BrdU ⁺ cells	# epithelial cells	% BrdU ⁺ cells/total epithelial cells			
1011	239	28,971	0.82%			
4212	219	27,034	0.81%			
4782	156	19,753	0.79%			
Totals	614	75,758	0.81%			
b. Nkx3.1 ^{-/-}	mutant					
Mouse ID	# BrdU ⁺ cells	# epithelial cells	% BrdU ⁺ cells/total epithelial cells			
0909	36	24,602	0.15%			
0911	35	14,048	0.25%			
8371	89	15,394	0.58%			
8372	66	15,903	0.48%			
8373	46	16,654	0.28%			
Totals	272	86,601	0.31% (<i>p</i> =0.003)			

Supplementary Table 4. Summary of prostate phenotypes in control and *Nkx3.1* mutant mice after three and five rounds of serial regression/regeneration.

Nkx3.1 genotype	Regeneration	Number	Normal	Hyperplasia	PIN
+/+	3 rounds	7	4	2	1
+/+	5 rounds	9	8	1	0
+/+	Intact ^a	6	4	1	1
+/_	3 rounds	8	3	5	0
+/_	5 rounds	8	7	1	0
+/_	Intact ^a	7	2	2	3
/	3 rounds	5	0	5	0
/	5 rounds	10	3	7	$0_{\rm p}$
/	Intact ^a	9	3	1	5

Phenotypes were scored blind using hematoxylin-eosin stained anterior prostate sections, using standard criteria¹.

^aData for intact mice at 6-12 months of age have been previously published².

^bDifference in frequency of PIN between serially regenerated and intact Nkx3.1 homozygous animals is significant (p < 0.01).

Supplementary Table 5. Antibodies used in this study.

Antigen	Supplier	Ig type	Dilution
Androgen receptor	Sigma #A9853	rabbit IgG	1:500
Androgen receptor (AN1-15)	Affinity Bioreagents MA1-150	rat IgG	1:50
β-catenin	BD Biosciences #610153	mouse IgG1	1:1000
β-galactosidase	Rockland #100-4136	rabbit IgG	1:1000
BrdU	Abcam #ab1893	sheep IgG	1:200
CK5	Covance #PRB-160P	rabbit IgG	1:500
CK14	Biogenex #MU146-UC	mouse IgG1	1:100
CK18	Abcam #ab668	mouse IgG1	1:100
CD117 (ACK2)	eBioscience #14-1172	rat IgG2b	1:100
CD117 (ACK45)	BD Pharmingen #553868	rat IgG2b	1:100
Cre	Covance #PRB-106C	rabbit IgG	1:1000
E-cadherin	Cell Signaling #4046	rabbit IgG	1:200
GFP	Invitrogen #A11122	rabbit IgG	1:1000
GFP	Roche #11814460001	mouse IgG1	1:200
GFP	Abcam #ab13970	chick IgY	1:1000
Ki67	DakoCytomation #M7249	rat IgG2a	1:600
Ki67	Novocastra #NCL-Ki67p	rabbit IgG	1:1400
Nkx3.1	Ref. 3	rabbit IgG	1:1000 or 1:8000
Nkx3.1	Ref. 4	rabbit IgG	1:2000
p63	Santa Cruz #sc-8431	mouse IgG1	1:600
p63	Santa Cruz #sc-8343	rabbit IgG	1:50
PTEN	Cell Signaling #9559	rabbit IgG	1:100
Phospho-Akt	Cell Signaling #3787	rabbit IgG	1:50
Smooth muscle actin	Sigma #A2547	mouse IgG1	1:300
Synaptophysin	Zymed #18-0130	rabbit IgG	1:500

References for supplementary material

- ¹ Park, J.H. *et al.*, Prostatic intraepithelial neoplasia in genetically engineered mice. *Am J Pathol* 161 (2), 727-735 (2002).
- ² Kim, M.J. *et al.*, Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. *Cancer Res.* 62 (11), 2999-3004 (2002).
- ³ Kim, M.J. *et al.*, Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. *Proc. Natl. Acad. Sci. USA* 99 (5), 2884-2889 (2002).
- ⁴ Chen, H., Mutton, L.N., Prins, G.S., & Bieberich, C.J., Distinct regulatory elements mediate the dynamic expression pattern of Nkx3.1. *Dev Dyn* 234 (4), 961-973 (2005).
- ⁵ Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R., & Thomas, K.R., Targeting genes for self-excision in the germ line. *Genes Dev.* 13 (12), 1524-1528 (1999).
- ⁶ Cunha, G.R. & Vanderslice, K.D., Identification in histological sections of species origin of cells from mouse, rat and human. *Stain Technol* 59 (1), 7-12 (1984).
- ⁷ Lei, Q. *et al.*, NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. *Cancer Cell* 9 (5), 367-378 (2006).

Legends for Supplementary Figures

Supplementary Figure 1. Expression of Nkx3.1 and CD117 (c-kit) in prostatic lobes of androgen-deprived mice. a, Confocal immunofluorescence detection of Nkx3.1 and p63 in wildtype intact anterior prostate; nuclei are detected by counter-staining with TOPRO3. Representative Nkx3.1⁺ luminal (lum) and p63⁺ basal (bas) cells are indicated; arrow indicates a basal cell that co-expresses Nkx3.1 and p63. b, Expression of Nkx3.1 and p63 in wild-type anterior prostate after one round of regression and regeneration. Arrow indicates a basal cell that co-expresses Nkx3.1 and p63. c, d, Detection of castration-resistant Nkx3.1-expressing cells (CARNs) (arrows) in ventral prostate (VP) (c) and dorsolateral prostate (DLP) (d) of a castrated adult male. e, f, Detection of CARNs (arrows) in anterior prostate (AP) (e) and dorsolateral prostate (f) in the second-round regressed state, following one round of regeneration and regression. g, Expression of androgen receptor (AR) by a CARN (arrow) in the regressed prostate. h, CARNs are growth-quiescent, as shown by lack of co-staining for Nkx3.1 (arrows) and Ki67 (arrowheads) in regressed prostate. i, Detection of CARNs (arrows) in wild-type prostate using an independent Nkx3.1 polyclonal antiserum⁴. **j**, Absence of Nkx3.1 immunostaining in a Nkx3.1^{-/-} homozygous mutant anterior prostate. k, l, Expression of CD117 (c-kit) in the regressed anterior prostate, as detected by two different monoclonal antibodies, ACK2 (k) and ACK45 (l). Note that the rare CD117-positive cells are never luminal. Scale bars correspond to 25 microns.

Supplementary Figure 2. Generation and analysis of the inducible *Nkx3.1*^{CreERT2/+} knock-in allele in intact male mice. a, The targeting strategy utilizes the self-excising *ACE-Cre/PolII-neo* selection cassette from the pACN vector⁵, and inserts *CreER*^{T2}-polyA at the translation start site for *Nkx3.1*, thereby generating a null allele for *Nkx3.1*. Excision of the selection cassette by *CreloxP* recombination occurs by passage through the male germline, and occurs with 100% efficiency. *Abbreviations:* E, *EcoRI*; H, *Hin*DIII; X, *XbaI*. b, The CreER^{T2} fusion protein is inactive unless transiently activated by tamoxifen. Cre activation can lead to recombination at the

R26R-lacZ reporter locus; since this occurs on a cell-by-cell basis, the resulting tissue may be mosaic for *lacZ* expression. **c**, **d**, Low-power views of β-galactosidase staining of dorsolateral prostate from intact $Nkx3.1^{CreERT2/+}$; R26R-lacZ/+ mice, either mock-injected (**c**) or injected with tamoxifen (**d**). **e**, **f**, Cre-mediated recombination in the anterior prostate of intact $Nkx3.1^{CreERT2/+}$; R26R-YFP/+ mice following tamoxifen-induction, showing sporadic YFP expression predominantly in luminal cells (**e**), but also in p63⁺ basal cells (arrow, **f**). Scale bars correspond to 100 microns (**c**, **d**) or 25 microns (**e**, **f**).

Supplementary Figure 3. Bipotentiality and self-renewal of CARNs. a, Co-localization of YFP (arrows) and cytokeratin 14 is not observed in the castrated and tamoxifen-induced Nkx3.1^{CreERT2/+}; R26R-YFP/+ anterior prostate (n=0/131 YFP⁺ cells). **b,** Co-localization of YFP with cytokeratin 5 (CK5) is almost never observed (n=2/93 YFP⁺ cells); both of the observed YFP⁺CK5⁺ cells show atypical basal morphology (inset). c, Co-localization of YFP with cytokeratin 18 (CK18) (n=123/123 YFP⁺ cells). d, Co-expression of YFP with androgen receptor (AR) (n=94/94). e. Overlap of Cre and YFP expression (arrows) in castrated and tamoxifeninduced Nkx3.1^{CreERT2/+}: R26R-YFP/+ anterior prostate at four days following tamoxifen administration in the regressed state. f, Persistence of lineage-marked cells (arrows) in the androgen-deprived and tamoxifen-induced Nkx3.1^{CreERT2/+}; R26R-YFP/+ prostate epithelium, using direct visualization of YFP. Mice were castrated at two months of age and tamoxifeninduced after four weeks of regression, then maintained in the androgen-deprived state until analysis at ten months of age. g-i, Co-localization of YFP and p63 in a lineage-marked basal cells (arrow) of a castrated, tamoxifen-induced, and regenerated Nkx3.1^{CreERT2/+}; R26R-YFP/+ anterior prostate, shown as an overlay (g) and as individual channels (h, i).j-l, Co-localization of βgalactosidase and cytokeratin 14 in a lineage-marked basal cell (arrow) of a castrated, tamoxifeninduced, and regenerated Nkx3.1^{CreERT2/+}; R26R-lacZ/+ anterior prostate, shown as an overlay (j) and as individual channels (k, l). m, Strategy for analysis of self-renewal. Nkx3.1^{CreERT2/+}; R26R-

YFP/+ male mice are castrated, tamoxifen-induced, and regenerated, with BrdU administered during the first three days of regeneration, followed by removal of androgens and prostate regression. Triple-positive Nkx3.1⁺YFP⁺BrdU⁺ cells would correspond to cells that were CARNs in both the first and second regressions, and had undergone proliferation, consistent with self-renewal. Scale bars correspond to 25 microns.

Supplementary Figure 4. Generation of prostate tissue by dissociated CARNs in tissue recombinants. a, Strategy for analysis of CARNs potential in tissue recombinant/renal grafts generated using approximately 160 lineage-marked YFP⁺ cells. **b-d,** Contribution of lineage-marked YFP⁺ cells in renal grafts grown from dissociated cells of castrated and tamoxifen-induced *Nkx3.1*^{CreERT2/+}; *R26R-YFP/+* mice combined with rat urogenital mesenchyme. The percentage of lineage-marked basal cells varies significantly in these grafts; compare their relative absence in **b** (arrowheads indicate non-marked basal cells) to their abundance in **d. e-g,** Higher-power view of duct in **d** shows numerous YFP⁺p63⁺ basal cells (arrows); *insets* show colocalization of YFP and p63. Scale bars correspond to 25 microns.

Supplementary Figure 5. Generation of prostatic ducts in renal grafts by single lineagemarked CARNs. a-f, Bright-field (a, b) and epifluorescence (d, e) views of dissociated prostate cells from lineage-marked *Nkx3.1*^{CreERT2/+}; *R26R-YFP/*+ prostate tissue (a, d) and single YFP⁺ cells isolated by mouth-pipetting (b, e). Dark-field (c) and epifluorescence (f) views of renal grafts after growth for 2.5 months. g, h, Expression of E-cadherin (g) and cytokeratin 5 (CK5) (h) in ducts from single YFP⁺ cells. Scale bars correspond to 25 microns (a, b, d, e, g, h) or 1 mm (c, f).

Supplementary Figure 6. Distinct morphology of mouse and rat nuclei in renal grafts. High-power images of DAPI-stained ducts from tissue recombinants/renal grafts show that mouse nuclei (a) contain multiple punctate staining regions, while rat nuclei (b) generally do not⁶. Note that the epithelium from the single-cell graft in a contains mouse epithelium (epi) and rat stroma (str) as expected, while both the epithelium and stroma in b are of rat origin.

Supplementary Figure 7. Histopathological analysis of wild-type and $Nkx3.I^{-/-}$ mutant prostates after three rounds of serial regression/regeneration. a, Timeline for serial regression/regeneration strategy. b-e, Immunostaining for the basal cell marker p63 in wild-type (b, d; arrow, d) and $Nkx3.I^{-/-}$ serially-regenerated mutant prostate (c, e; arrow, e); note that an area of the $Nkx3.I^{-/-}$ prostate in (c) lacks epithelial cells (arrows). f, g, α -smooth muscle actin (SMA) marks stroma in wild-type (f) and $Nkx3.I^{-/-}$ (g) serially-regenerated prostate; no difference in staining pattern is observed. h, i, Nkx3.1 immunostaining is detected in wild-type (h), but not $Nkx3.I^{-/-}$ (i) mutant prostate after three rounds of serial regeneration. Scale bars correspond to 50 microns.

Supplementary Figure 8. Histopathological analysis of wild-type and $Nkx3.I^{-/-}$ mutant prostates after five rounds of serial regression/regeneration. a, Timeline for serial regression/regeneration strategy. b-e, Hematoxylin-eosin staining of wild-type (b, d) and $Nkx3.I^{-/-}$ mutant (c, e) anterior prostate after serial regeneration, shown at low (b, c) and high-power (d, e). Note the relative absence of epithelial hyperplasia typically found in intact $Nkx3.I^{-/-}$ mutants, as well as an increase in basal cells in limited regions (arrow, e). f, g, Increased number of p63⁺ basal cells (arrow, g) in regions of serially regenerated $Nkx3.I^{-/-}$ mutant prostates. h, i, Similar proliferative index in serially regenerated wild-type (h) and $Nkx3.I^{-/-}$ mutant (i) anterior prostates, as determined by Ki67 immunostaining (arrows). j, k, α -smooth muscle actin (SMA) marks stroma in wild-type and $Nkx3.I^{-/-}$ serially-regenerated anterior prostate. No difference in staining

patterns is observed, in contrast with the significantly attenuated SMA staining in intact $Nkx3.1^{-/-}$ mutant prostate at similar ages². **l, m,** Androgen receptor (AR) immunostaining shows an identical pattern in wild-type (**l**) and $Nkx3.1^{-/-}$ (**m**) serially-regenerated anterior prostate. Note that AR immunoreactivity is modestly increased in $Nkx3.1^{-/-}$ mutant prostate epithelium, as has been previously reported for intact mice⁷. **n, o,** Nkx3.1 immunostaining can be detected in wild-type (**n**), but not $Nkx3.1^{-/-}$ (**o**) mutant prostate after five rounds of serial regeneration. **p, q,** Synaptophysin (Syn) immunoreactivity detects rare neuroendocrine cells in serially regenerated wild-type (**p**) and $Nkx3.1^{-/-}$ mutant (**q**) anterior prostates. **r, s,** Hematoxylin-eosin (H&E) staining of dorsolateral (DLP) prostate shows that the phenotype of the serially regenerated $Nkx3.1^{-/-}$ mutant DLP (**r**) resembles that of the wild-type DLP control (**s**). Scale bars correspond to 100 microns (**b-g**) or 50 microns (**h-s**).

Supplementary Figure 9. Model for *Nkx3.1* function in prostate stem cell maintenance. Note that for simplicity, stem cells and multipotent progenitors (MPP) are not depicted as either luminal or basal. **a,** In intact *Nkx3.1* mutant mice, stem cell self-renewal may be impaired, leading to increased differentiation of lineage-restricted transit amplifying cells and consequent epithelial hyperplasia. **b,** Depletion of stem cells and transit amplifying cells through serial regression/regeneration would lead to reversion of the hyperplasia phenotype due to androgen-dependent apoptosis of luminal cells during regression, accompanied by potential accumulation of androgen-independent basal cells.

Supplementary Figure 1.

Supplementary Figure 2.

Supplementary Figure 3.

Supplementary Figure 4.

Supplementary Figure 5.

Supplementary Figure 6.

Supplementary Figure 7.

Supplementary Figure 8.

Supplementary Figure 9.

